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Abstract
Real-world data derived from electronic health records often exhibit high lev-
els of missingness in variables, such as laboratory results, presenting a challenge 
for statistical analyses. We developed a systematic workflow for gathering evi-
dence of different missingness mechanisms and performing subsequent statisti-
cal analyses. We quantify evidence for missing completely at random (MCAR) or 
missing at random (MAR), mechanisms using Hotelling's multivariate t-test, and 
random forest classifiers, respectively. We further illustrate how to apply sensitiv-
ity analyses using the not at random fully conditional specification procedure to 
examine changes in parameter estimates under missing not at random (MNAR) 
mechanisms. In simulation studies, we validated these diagnostics and compared 
analytic bias under different mechanisms. To demonstrate the application of this 
workflow, we applied it to two exemplary case studies with an advanced non-
small cell lung cancer and a multiple myeloma cohort derived from a real-world 
oncology database. Here, we found strong evidence against MCAR, and some evi-
dence of MAR, implying that imputation approaches that attempt to predict miss-
ing values by fitting a model to observed data may be suitable for use. Sensitivity 
analyses did not suggest meaningful departures of our analytic results under po-
tential MNAR mechanisms; these results were also in line with results reported 
in clinical trials.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Missing data is a common issue in real-world data (RWD), and appropriate ana-
lytic methods depend on the underlying missingness mechanism, which is un-
testable. Methods are generally applied in an ad hoc manner, and do not convey 
how robust results may be to departures from assumptions.
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INTRODUCTION

Healthcare data collected outside of clinical trials (real-
world data [RWD]) are increasingly used in research 
and clinical drug development, including regulatory 
decision making.1 Electronic health records (EHRs), 
in particular, are an important backbone for RWD re-
search as they provide detailed clinical information on 
a patient's disease journey. In cancer research, it was 
found that under routine care settings, certain labora-
tory tests show a high prognostic value across different 
tumor types.2 Ideally, complete and perfectly measured 
laboratory data would provide the means to implement 
inclusion/exclusion criteria for selecting real-world co-
horts of patients, define end points and covariates for 
assessing treatment effectiveness or adverse events, and 
support the development of prognostic scores. However, 
laboratory values in EHR-derived data are often sub-
ject to a high degree of missingness due to varying data 
capture and screening decisions in routine clinical care, 
posing a challenge for the use of RWD in statistical 
analyses.

When analyzing data subject to missingness, ap-
proaches based on complete case data analyses may end 
up being biased if data missingness does not occur com-
pletely at random, but is associated with underlying fea-
tures. In this case, imputation approaches where missing 
values are predicted using additional variables collected 
in the dataset, may allow for unbiased analytic results 
with less uncertainty, due to using the entire dataset.3 
However, if the missing values are systematically differ-
ent from the observed ones in a way that cannot be ap-
propriately modeled, then imputation can lead to biased 
results. Sensitivity analyses can model departures from 

ignorable missingness, and the appropriate analysis strat-
egy depends on the missingness mechanism present in 
the data.

In this paper, motivated by a desire to mitigate the 
impact of missingness in laboratory data derived from 
EHRs, we outline a systematic workflow for character-
izing missing data mechanisms, and performing subse-
quent statistical analyses. In general, it is not possible to 
formally test data for different missingness mechanisms 
because these inherently depend on the distribution of 
the unobserved values. Instead, we propose the use of di-
agnostics that provide evidence for certain mechanisms 
over others which may be used alongside specific domain 
knowledge of the underlying data generating mecha-
nisms. First, we outline our basic assumptions, which 
we validate in a simulation study. We then apply our 
approach to analyzing two exemplary case studies from 
an EHR-derived oncology database, illustrating how to 
analyze RWD subject to missingness and interpret sub-
sequent results.

METHODS

Background

For this study, we consider an EHR-derived dataset con-
taining a single laboratory variable subject to missingness 
and other variables that are fully observed. However, our 
methods can be extended to the multivariate missingness 
setting. We denote the true laboratory variable as lab, the 
observed laboratory value with missingness as labobs, and 
the remaining variables as �. These variables may include 
covariates and outcomes. Additionally, we define Mlab as a 

WHAT QUESTION DID THIS STUDY ADDRESS?
This study addresses how to implement diagnostic and analytic methods for miss-
ing data in RWD.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This study demonstrates how to gather evidence for different missingness mecha-
nisms, which then informs subsequent data analysis methods. In particular, this 
study recommends a systemic approach, with an emphasis on sensitivity analyses 
to demonstrate the robustness of scientific conclusions. We also differentiate be-
tween two distinct mechanisms for missing not at random.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
This study serves as a guide for handling missing data, which is common in RWD 
analyses. Our workflow allows analysts to connect evidence for missingness ap-
proaches to analytic methods, providing transparency in the robustness of re-
ported results.
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binary missingness indicator for lab; Mlab = 1 if lab is miss-
ing, and 0 otherwise.

We first define missing completely at random 
(MCAR). Under this missingness mechanism, the prob-
ability of a patient having a missing laboratory value 
does not depend on their true laboratory value or on 
any other (observed or unobserved) variables. For exam-
ple, if laboratory values measured on a certain day were 
deleted due to a technical failure, this would result in 
the data being MCAR. Given MCAR data, a complete 
case analysis will generally provide unbiased results, 
and only suffer from a loss of precision due to having 
a smaller sample size.4 In such cases where sample 
size and the associated loss in statistical efficiency are 
a concern, multiple imputation can be beneficial even 
under MCAR if the missingness is mostly observed in 
exposure or confounders or if enough auxiliary vari-
ables (i.e., variables that are not part of the primary 
analysis but show correlations to the partially observed 
variable), are available.5 As a result, the retention of in-
complete cases will increase statistical efficiency and a 
multiple imputation approach typically provides more 
realistic estimates of the variance as it also accounts for 
the extra variance caused by the missing data (between-
imputation variance).3

Under the mechanism of missing at random (MAR), 
the probability of a patient having a missing laboratory 
test does not depend on their true laboratory value, but 
does depend on observed variables � (e.g., age, sex, ther-
apy type, and outcomes). An example of MAR labora-
tory values would be if older patients were more likely 
to receive tests, and age was measured in the dataset. 
MAR data are usually assumed in order to obtain un-
biased analytic results under imputation procedures. 
Generally, the performance of multiple imputation pro-
cedures, however, additionally depends also on other 
factors, like the variable type that is partially observed 
(exposure, outcome, or confounders)5 and the presence 
of auxiliary variables.6

Data are considered to be missing not at random 
(MNAR) in the absence of MCAR or MAR.7 We consider 
two different types of relationships yielding MNAR 
data. First, if the probability of a patient having a miss-
ing laboratory test does not depend on their true lab-
oratory value, but does depend on some unobserved 
variables U , this would be considered MNAR. This can 
arise, for example, if patients with a certain biomarker 
not observed in the dataset are more likely to have 
missing laboratory values. Second, data are also con-
sidered MNAR if the missingness probability is directly 
affected by the true laboratory values; for example, if 
patients with a history of normal laboratory values are 
systematically less likely to be tested. These two MNAR 

mechanisms have different implications for imputation 
accuracy and the resulting analytic bias. We refer to the 
former mechanism as MNAR-unobserved and the latter 
as MNAR-value.

For a graphical overview of all mechanisms, see 
Figure 1.

Proposed workflow and statistical analysis

Depending on the above described missingness mecha-
nisms, different analytical methods may be used to address 
missingness in statistical analysis. However, selecting the 
appropriate approach requires sufficient evidence for a 
particular missingness mechanism. To gather evidence 
for the different assumptions, we propose the following 
workflow (Figure 2).

Step 1: Assess evidence for MCAR

Under MCAR, patient characteristics between patients 
with and without an observed laboratory test should be 
balanced as the missingness is independent of both the 
observed and unobserved data. On a variable-by-variable 
basis this can be examined by comparing the standard-
ized mean differences (SMDs) between patients with and 
without an observed laboratory test; an absolute stand-
ardized difference less than 0.1 is conventionally consid-
ered to indicate balance and would give evidence for the 
missingness being MCAR.8 Further, Little's chi-squared 
test,9 which takes into account possible patterns of miss-
ingness across all variables in the dataset, can be applied. 
Rejection of the null hypothesis of this test would provide 
sufficient evidence to indicate that the data are (globally) 
not MCAR and one would continue with step 2 (examin-
ing MAR). In case all other variables are fully observed 
and one is only interested in examining the missingness of 
the lab itself, Little's test is equivalent to a Hotelling's mul-
tivariate t-test,10 which examines variable differences con-
ditional on having an observed laboratory test or not. As 
the power of statistical hypothesis tests can be influenced 
by sample size, the combined investigation along with 
SMDs is recommended. Given a lack of evidence against 
MCAR, both complete case analysis and multiple imputa-
tion approaches may be feasible approaches that result in 
unbiased estimates for further downstream analyses.7,11

Step 2: Assess evidence for MAR

Given a lack of evidence for MCAR, the next possible 
hypothesis would examine an MAR scenario where the 
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missingness could be predicted by using a classification 
model using observed variables �. As part of this work-
flow, we will use a random forest (RF) classification 
model due to its ability to implicitly model nonlinear and 
non-additive relationships between observed variables.12 
The performance of the classification model to predict the 
missingness is measured by the area under the receiver 
operating characteristic curve (AUC). A sufficiently high 
AUC with values meaningfully greater than 0.5 would 
give evidence that the missingness is dependent on the 
largely observed variables and hence would give some 
indication for the missingness being MAR. Given a rela-
tionship between missingness and observed data, multiple 
imputation would be an appropriate approach to handle 
missingness, whereas a complete case analysis would 
likely result in biased estimates.

Step 3: Apply not at random fully conditional 
specification sensitivity analysis to assess 
robustness to MNAR mechanisms

If MNAR is suspected as a plausible missingness mecha-
nism, we recommend sensitivity analyses of the final 
statistical model using the not at random fully condi-
tional specification (NARFCS) algorithm, as proposed by 
Tompsett.13 In practice, because it is not possible to differ-
entiate MNAR using observed data, applying NARFCS is 
useful to demonstrate the robustness of imputation-based 
approaches, even with evidence of MAR. The NARFCS 
procedure consists of shifting the imputations drawn at 
each iteration of a multiple imputation model under an 
MAR scenario by a user-specified quantity (sensitivity pa-
rameter �) to reflect systematic departures of the missing 

F I G U R E  1   M-graph34 representations of the four missingness mechanisms considered, with labobs representing observed laboratory 
values subject to missingness. (a) MCAR: Missingness (Mlab) is independent of the true laboratory values (lab) and any other variables X
. (b) MAR: Missingness (Mlab) depends on observed variables � but is independent of true laboratory values (lab). (c) MNAR-unmeasured: 
Missingness (Mlab) depends on unobserved variables U  but is independent of true laboratory values (lab). (d) MNAR-value: Missingness 
(Mlab) depends on true laboratory values (lab). A directed edge represents a causal effect of a variable on another. MAR, missing at random; 
MCAR, missing completely at random; MNAR, missing not at random.
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data from the observed data distribution. It can be used as a 
“tipping point” sensitivity analysis to investigate how large 
a (plausible) systematic departure of missing data versus 
observed data would need to be to qualitatively change the 
conclusion of an analysis. The sensitivity parameter can be 
interpreted as the average difference between imputed and 
observed values of a variable, conditional on all remaining 
variables of the data. That is, for a single covariate, a shift 
in the sensitivity parameter may be interpreted as a shift to 
the intercept on the scale of the unit of the covariate. Given 
an analysis with sensitivity parameter � = 0, this would be 
equivalent to an ordinary imputation based on a fully con-
ditional specification13 without any sensitivity parameter.

This systematic workflow aims to provide evidence for 
certain mechanisms over others but the exact missingness 
mechanism is formally not identifiable from incomplete 
data.4 This systematic workflow aims to provide evidence 
for certain mechanisms over others but due to several fac-
tors, such as the almost always unknown data generating 
mechanisms and the “unknown unknowns,” the exact 
missingness mechanism is formally not identifiable.

Data sources and study design

Simulation design

This first part of the study used de novo simulated data-
sets to assess and validate the general assumptions of the 
proposed workflow. We simulated data corresponding to 
a comparative effectiveness study, according to the follow-
ing steps.

1.	 Continuous covariates were generated as Z ∼ N(0, 1).
2.	 Binary values indicating if a laboratory measure-

ment was within a normal range were generated as 
P(lab = 1) = 0.9 I(Z < 0) + 0.1 I(Z > 0).

3.	 Binary treatment indicators were generated as 
logit P(trt = 1) = log(0.7) Z + log(1.3) lab.

4.	 Finally, survival and censoring times were generated in-
dependently from an exponential distribution with hazard 
function � = 0.3 exp(log(2) Z + log(0.7)lab + log(0.8) trt).

5.	 The observed time to event time was then selected as 
the minimum of survival and censoring times.

F I G U R E  2   Illustration of systematic workflow to diagnose potential missingness mechanisms. AUC, area under the receiver operating 
characteristic curve; H0, null hypothesis; MAR, missing at random; MCAR, missing completely at random; MNAR, missing not at random; 
NARFCS, not at random fully conditional specification; SMD, standardized mean difference.
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We then simulated missingness in the laboratory vari-
able according to five missingness mechanisms, induced 
as follows:

1.	 MCAR: Each laboratory value has a constant miss-
ingness probability of 0.5.

2.	 MAR v1: The probability of missing-
ness depends on the covariate Z, that is, 
P
(

Mlab = 1
)

= 0.9 I(Z < 0) + 0.1 I(Z ≥ 0).
3.	 MAR v2: The probability of missingness de-

pends on all observed variables, that is, 
logit P

(

Mlab = 1
)

= 1 + 2 Z + log(0.5) time + log(1.7) trt .
4.	 MNAR-unmeasured: The probability of 

missingness depends on all observed vari-
ables and an unobserved variable U, that is, 
logit P

(

Mlab = 1
)

= 1 + 2 Z + log(0.5) time + log(1.7) trt + 2U  . 
Here, we generate U ∼ N(0, 1) and laboratory tests as 
logit P(lab = 1) = 3 Z + 3 U.

5.	 MNAR-value: The probability of missingness depends 
on all observed variables and the true lab, that is, 
logit P

(

Mlab = 1
)

= 2 Z + log(0.5) time + log(1.7) trt + 2 lab .

Parameters were set to result in strong associations 
between missingness and other variables; this was done 
in order to induce a meaningful amount of analytic bias. 
For each simulation iteration, we created simulated data-
sets with missing data by setting laboratory values to be 
missing according to their assigned probability. Using 
these simulated datasets, we assessed the performance of 
Little's test and the AUC MAR diagnostic under the dif-
ferent missingness mechanisms over 200 simulation itera-
tions for each mechanism. For Little's test, we reported the 
proportion of p values less than 0.05 for each missingness 
mechanism. In order to implement the AUC diagnostic, 
we fit a random forest model to each simulated dataset and 
tuned hyperparameters using five-fold cross-validation to 
maximize AUC. We summarized the results by averaging 
the AUCs for each missingness mechanism.

For each missingness mechanism, we also examined 
the estimation bias of fitting Cox regression models to the 
datasets subject to missingness, under complete case anal-
ysis and multiple imputation. Here, we treated estimates 
from Cox models fit to the complete datasets without 
missingness as the ground truth. For each covariate, we 
reported the distributions of absolute bias and confidence 
interval coverage probabilities of estimated hazard ratios. 
We also reported the L1 bias, defined as the sum of abso-
lute biases across all hazard ratios. Multiple imputation 
was implemented using the mice package in R,14 with lo-
gistic regression as the imputation method, and 100 mul-
tiple imputations performed.

Application of workflow to real-world cohorts

For the second part of this study, we derived two real-
world cohorts from the nationwide Flatiron Health 
EHR-derived de-identified database, a longitudinal da-
tabase, comprising de-identified patient-level structured 
(e.g., laboratory values and prescribed drugs) and un-
structured data from ~280 US cancer clinics (~800 sites 
of care) curated via technology-enabled abstraction.15,16 
The majority of patients in the database originate from 
community oncology settings. Institutional review 
board approval of the study protocol was obtained prior 
to study conduct, and included a waiver of informed 
consent.

To illustrate the application of our workflow and 
the resulting impact of missingness of hemoglobin 
(Hgb) as an important prognostic laboratory test for 
real-world overall survival (rwOS) across several tumor 
types,2,17,18 the following case studies on two exem-
plary exposure-outcome associations were performed. 
First, we selected a real-world cohort of patients with 
a confirmed advanced non-small cell lung cancer (aN-
SCLC) diagnosis who initiated a first-line (1 L) check-
point inhibitor (CPI) regimen in or after 2017 and had 
a documented PD-L1 biomarker status. Based on prior 
published literature, we expected an increased rwOS 
among CPI patients with PD-L1 positive status and/
or higher PD-L1 staining than those with PD-L1 neg-
ative status or lower PD-L1 staining17,18 in case of an 
unbiased estimate not affected by missingness in Hgb 
laboratory tests. Similarly, we further derived a second 
cohort of patients diagnosed with multiple myeloma 
(MM) who received either lenalidomide, bortezomib, 
and dexamethasone (VRd) or carfilzomib, lenalido-
mide, and dexamethasone (KRd) on first-line therapy. A 
clinical trial comparing these treatments found no evi-
dence of a significant difference in rwOS or real-world 
progression-free survival.19

We applied our proposed workflow to both cohorts 
to assess the possibility for MCAR, MAR, or MNAR 
being the most likely missingness scenario. We further 
applied Cox proportional hazard regression models to 
estimate the hazard ratios (HRs) for rwOS that would 
result from a complete case analysis, a multiple impu-
tation analysis using the logreg imputation algorithm 
in the mice package14 to impute missing Hgb labora-
tory values and an NARFCS sensitivity analysis to il-
lustrate potential tipping points that would lead to a 
rejection of the results of our primary analysis. More 
details on the exemplary case studies are summarized 
in Table S1.
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RESULTS

Simulation study results

Diagnostic results

The results evaluating the AUC diagnostic are displayed 
in Table 1. We observed that MCAR missingness results 
in AUC values close to 0.5, which indicates a classifier 
that performs as well as random guessing. This is to be 
expected because under MCAR, there is no systematic dif-
ference between patients who have a missing laboratory 
test versus those who have one observed. Therefore, there 
is no relationship between the classifier features X  and 
the missingness indicator Mlab. Under the other missing-
ness mechanism, we observed AUC values meaningfully 
greater than 0.5, because the missingness probability is a 
function of observed variables. Both MAR mechanisms 
showed higher AUCs (0.90 and 0.92) than the other mech-
anisms. Because the MNAR mechanisms are partially 
driven by unobserved variables (either U  or lab) the pre-
dictive power of observed variables for Mlab was attenu-
ated somewhat.

Based on these results, we concluded that an AUC 
greater than 0.5 is a necessary condition for MAR, al-
though not sufficient, as this can occur given MNAR data 
too. However, MAR was consistent with higher AUC val-
ues than those seen under MNAR scenarios. This was also 
previously observed in work by Beaulieu-Jones et al.12 In 
practice, we recommend that this diagnostic is combined 
with domain knowledge of the data collection process 
and expected distributions in order to characterize miss-
ingness. For example, given an observed distribution of 
laboratory values that has fewer extreme values than ex-
pected in standard clinical care, we may conclude that the 

missingness mechanism is MNAR-value, even with an ob-
served AUC diagnostic greater than 0.5.

Analysis results

The L1 bias results by missingness mechanism are dis-
played in Figure 3. Bias in regression coefficient estimates 
is generally reduced by applying multiple imputation, 
compared to complete case analysis. The exception is with 
MAR v1, where complete case analysis showed slightly 
lower bias. MNAR-value missingness resulted in the 
greatest L1 bias under both analytic methods. We reported 
the absolute bias for each variable separately in Figure 3. 
Here, we see that multiple imputation estimated the treat-
ment hazard ratio unbiasedly, uniformly across missing-
ness mechanisms. Bias was also reduced for estimating 
the HR of the covariate Z, but increased for the lab HR 
under MAR mechanisms. This is similarly borne out in 
the empirical coverage probabilities displayed in Figure 3. 
Under MAR, the confidence interval coverage for the lab 
HR was low under multiple imputation, whereas valid for 
complete case analysis. Conversely, the coverage for the trt 
HR under multiple imputation was valid across all mecha-
nisms, including MNAR. Therefore, when a confounding 
variable is subject to missingness, multiple imputation 
can provide unbiased estimation and valid statistical in-
ference for the treatment effect of interest.

Application to real-world cohort

Descriptive statistics

After applying the cohort-specific inclusion and exclu-
sion criteria, 1930 and 3966 patients remained in the 
aNSCLC and MM cohorts, respectively. An Hgb measure-
ment was observed for 91.7% of patients in the aNSCLC 
cohort and for 83% in the MM cohort. The distributions 
of the observed laboratory measurements are illustrated 
in Figure S1.

Workflow diagnostics

The results of Little's/Hotelling's test are displayed in 
Table  2. Overall, all p values suggested a highly signifi-
cant difference in characteristics between patients with 
and without an observed Hgb laboratory test indicating 
strong evidence against MCAR. This was supported by 
descriptive statistics with acid sphingomyelinase deficien-
cies (ASMDs) greater than 0.1 for the majority of patient 
characteristics (Figure S2).

T A B L E  1   Little's test and AUC diagnostic results by simulated 
missingness mechanism. Little's test results are reported as 
probability of significant test (p value <0.05) rejecting MCAR, 
while AUC diagnostics are reported as mean with 95% confidence 
interval.

Mechanism Little's test
AUC 
diagnostic

MCAR 0.03 0.49 [0.49, 0.50]

MAR v1 1 0.90 [0.90, 0.90]

MAR v2 1 0.92 [0.91, 0.92]

MNAR-unmeasured 1 0.84 [0.84, 0.84]

MNAR-value 1 0.87 [0.87, 0.87]

Abbreviations: AUC, area under the receiver operating characteristic curve; 
MAR, missing at random; MCAR, missing completely at random; MNAR, 
missing not at random.
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F I G U R E  3   Top: Distributions of L1 bias (sum of absolute biases across all hazard ratios estimated) in simulation studies, by missingness 
mechanism. Middle: Distributions of absolute bias for each hazard ratio estimated (laboratory, treatment, and covariate) in simulation 
studies, by missingness mechanism. Bottom: Coverage probabilities of 95% confidence intervals for each hazard ratio estimated (laboratory, 
treatment, and covariate) in simulation studies, by missingness mechanism. MAR, missing at random; MCAR, missing completely at 
random; MNAR, missing not at random.



      |  1209MISSING LAB DATA IN EHR: NSCLC AND MM CASE STUDY

To investigate whether the missingness of Hgb may 
follow the MAR mechanism, we fit a classifier based on 
a RF model. The optimal hyperparameters in the final 
model were determined via grid search with five-fold 
cross validation (Figure S3). The resulting AUC values 
with corresponding 95% confidence intervals (CIs) and 
receiver operating characteristic curves are displayed 
in Figure 4. Overall, AUC values were 0.58 (aNSCLC) 
and 0.68 (MM), respectively, indicating some evidence 

for MAR laboratory values, particularly in the MM co-
hort. The variable importance and hence the strength 
of association between an observed patient character-
istic and the missingness of a laboratory test was addi-
tionally determined by the mean decrease in accuracy 
of the prediction after iteratively removing patient 
characteristics one by one. The results (Figure S4) re-
vealed a rather heterogeneous pattern suggesting that 
for each laboratory test and cancer type, different char-
acteristics may have been important for the respective 
prediction.

Case studies analytical results and NARFCS 
sensitivity analysis

The results of both case studies are summarized in Table 3 
and NARFCS sensitivity analyses in Figure 5. In the aN-
SCLC case study, investigating PD-L1 positive versus neg-
ative status, estimates derived from complete case analysis 
and multiple imputation yielded similar results, both sug-
gesting an increased rwOS among patients with positive 
PD-L1 status (complete case HR = 0.81, 95% CI [0.68, 
0.95]; multiple imputation HR = 0.79, 95% CI [0.67, 0.92]). 
Applying the NARFCS sensitivity analysis and imputing 

T A B L E  2   Results of Hotelling's test.

Cohort Test statistic p value

aNSCLC 146.29 <0.0001

MM 465.79 <0.0001

Note: Covariates compared for aNSCLC: age at index date, gender, index 
year, histology, group stage, smoking status, birth year, race/ethnicity, 
region, ECOG, age at diagnosis, age at advanced Dx, time initial Dx to index, 
time advanced Dx to index date, time from index date to end of follow-up, 
censoring indicator, PD-L1 status.Covariates compared for MM: age at index 
date (1 L treatment start), ECOG at index date, gender, ISS stage, index year 
(calendar year of 1 L treatment start), practice type, race/ethnicity, region, 
time diagnosis to index date, time from index date to end of follow-up, 
censoring indicator, line of therapy.
Abbreviations: aNSCLC, advanced non-small cell lung cancer; Dx, diagnosis; 
ECOG, Eastern Cooperative Oncology Group; ISS, International Staging 
System; MM, multiple myeloma.

F I G U R E  4   AUC diagnostic results on real-world cohorts. Covariates used in aNSCLC cohort: Age at index date, gender, index year, 
histology, group stage, smoking status, birth year, race/ethnicity, region, ECOG, age at diagnosis, age at advanced diagnosis, time from 
initial diagnosis to index, time from advanced diagnosis to index date, time from index date to end of follow-up, censoring indicator, PD-L1 
status. Covariates used in MM cohort: Age at index date (1 L treatment start), ECOG at index date, gender, ISS stage, index year (calendar 
year of 1 L treatment start), practice type, race/ethnicity, region, time from diagnosis to index date, time from index date to end of follow-up, 
censoring indicator, line of therapy. aNSCLC, advanced non-small cell lung cancer; AUC, area under the receiver operating characteristic 
curve; ECOG, Eastern Cooperative Oncology Group; ISS, International Staging System; MM, multiple myeloma.
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Hgb over a range of delta parameters from −10 to 10 did 
also not meaningfully alter this association. Therefore, 
even without a strong association between laboratory test 
missingness and observed variables, we conclude that the 
imputation analysis is robust to the MNAR mechanisms 
induced under NARFCS.

In the MM case study, directionally different results 
were obtained for the complete case (HR for KRd = 0.98, 
95% CI [0.63, 1.51]) and multiple imputation analy-
ses (HR for KRd = 1.25, 95% CI [0.87, 1.78]). However, 
the lack of statistical evidence for a significant associ-
ation was concordant. As with the NSCLC case study, 
applying the NARFCS sensitivity analysis over a range 
of sensitivity parameters did not alter the estimated HR 
compared to the result obtained by multiple imputa-
tion alone. Given this robustness, and strong evidence 
against MCAR, we have confidence in using the imputa-
tion analysis results.

DISCUSSION

We developed a systematic workflow for diagnosing miss-
ing data mechanisms, which we validated in a de novo 
simulation study and applied to aNSCLC and MM cohorts 
derived from a real-world de-identified EHR-derived da-
tabase. This workflow can be used to inform the appro-
priateness of complete-case, imputation, and sensitivity 
analysis approaches. To our knowledge this is the first 
study to investigate two different MNAR scenarios with 
different missingness assumptions, leading to differences 
in diagnostic results and bias. Moreover, our simulations 
showed unbiased results under multiple imputation for 
the treatment HR, even under MNAR mechanisms. This 
is consistent with previous work showing that the bias 
resulting from omitting confounders with only moderate 
prevalence and confounding strength was negligible.20 
Furthermore, very few studies have included the NARFCS 

Cohort
Expected effect 
estimate (HR)

HR (95% CI)

Complete case 
analysis

Multiple 
imputation

aNSCLC HR <1.0 0.81 (0.68, 0.95) 0.79 (0.67, 0.92)

MM HR ~ 1.0 0.98 (0.63, 1.51) 1.25 (0.87, 1.78)

Abbreviations: aNSCLC, advanced non-small cell lung cancer; CI, confidence interval; MM, multiple 
myeloma, HR, hazard ratio.

T A B L E  3   Results of case studies 
investigating PD-L1 positive versus 
negative biomarker status among 
patients with aNSCLC with a first-line 
(1 L) checkpoint inhibitor regimen and 
RVD (lenalidomide, bortezomib, and 
dexamethasone) versus KRd (carfilzomib, 
lenalidomide, and dexamethasone) 
exposure in 1 L patients with MM.

F I G U R E  5   NARFCS sensitivity analysis results for real world analyses in NSCLC and MM. � = 0 indicates HR estimated under multiple 
imputation without any sensitivity adjustment. 𝛿 > 0 indicates a shift in the imputation model where missing laboratory values are more 
likely to be normal than those observed; 𝛿 < 0 indicates a shift in the imputation model where missing laboratory values are more likely to 
be abnormal than those observed. Y-axis displays estimated HR with 95% confidence interval. HR, hazard ratio; MM, multiple myeloma; 
NARFCS, not at random fully conditional specification; NSCLC, non-small cell lung cancer.
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algorithm as an additional component to strengthen their 
conclusions. All methods can be implemented using 
standard software.14

This work tackles challenges caused by heterogeneous 
data capture that can result in bias and greater uncertainty 
in analyzing RWD. For the use of real-world evidence 
(RWE) in the regulatory realm, both the US Food and Drug 
Administration and the European Medicines Agency have 
pointed out the challenges posed by missing data, recom-
mending a series of approaches based on methods such as 
inverse probability weighting or likelihood-based meth-
ods21 as well as multiple imputation approaches,22 given 
full transparency regarding the assumptions required for 
validity of these methods,23-28 and accompanied by sensitiv-
ity analyses.25 Recent literature has noted that few studies 
address how missingness assumptions are actually checked, 
or how the missingness is handled in analyses; studies that 
propose recommendations do so in a non-systematic fash-
ion.12,19,29,30,31,32,33 Our workflow is an easy-to-implement 
approach to check analytical assumptions around the po-
tential mechanisms of missingness of critical variables be-
fore conducting further downstream analyses.

The AUC-based diagnostic for MAR can be imple-
mented with any classifier and is easy to interpret as a 
measure of association between missingness and observed 
variables. This is borne out in our simulations, where miss-
ingness under MAR and MNAR mechanisms was predict-
able. MAR consistently achieved higher AUC diagnostics 
than the MNAR mechanisms, which is in line with pre-
vious work.12 These two missingness mechanisms are not 
formally distinguishable from observed data alone, so we 
recommend that domain knowledge of the data-generating 
process is also taken into consideration to assess the plau-
sibility of MNAR. NARFCS sensitivity analysis can also be 
applied in more ambiguous situations to rule out meaning-
ful departures of the downstream analytical results under 
a possible MNAR mechanism. In our case study examples, 
for instance, a potential MNAR mechanism would have 
not meaningfully changed the estimates of our main anal-
yses, both of which were in line with results reported in the 
literature and coming from clinical trials.

A limitation of this study is that we focused on the miss-
ingness of one laboratory test at a time and assumed that 
other variables were fully observed. In reality, many vari-
ables in a dataset can be missing under different missing-
ness mechanisms. Nevertheless, the proposed workflow 
may still diagnose the potential missingness mechanisms 
of the most critical variables for a given research question 
and the NARFCS sensitivity analysis can be extended to 
multiple variables.13

Possible future extensions of this study may focus on 
multivariable scenarios and explicit nonlinear and non-
additive variable relationships. In addition, the influence 

of various differential and non-differential missingness 
scenarios may be of particular interest in the context of 
modeling and evaluating treatment effects in RWE stud-
ies. Finally, extensions of our investigations to observa-
tional causal inference analyses may be of high interest 
for potential future research.
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